Chem. Ber. 112, 1260 – 1266 (1979)

Oxidation cyclischer Ether durch Iod-tris(trifluoracetat). Synthese und NMR-Analyse einiger diastereomerer 3-Desoxypentofuranose-Derivate

Joachim Buddrus* und Helmut Herzog

Institut für Spektrochemie und Angewandte Spektroskopie, Bunsen-Kirchhoff-Str. 11, D-4600 Dortmund 1

Eingegangen am 26. Juni 1978

Iod-tris(trifluoracetat) (1) oxidiert den cyclischen Ether 2 zu einem Gemisch (3), das aus den vier diastereomeren 3-Desoxypentofuranosen A-D besteht. Das Hauptisomere A, ein 3-Desoxythreo-pentofuranose-Derivat, kristalliert aus dem Gemisch und ist somit in einem einzigen Syntheseschritt zugänglich, während bisher mindestens sechs Stufen erforderlich waren. – Die ¹H- und ¹³C-NMR-Spektren der vier Diastereomeren wurden analysiert (Abb. 1 und 2). – Laut ¹H-NMR-Spektren können auch γ -Effekte zur Konfigurationsbestimmung dieser Fünfringe herangezogen werden: γ -Substituenten, die von der *trans*- in die *cis*-Position wechseln, verursachen eine Tiefeldverschiebung des Protons zwischen 0.04 und 0.22 ppm.

Oxidation of Cyclic Ethers by Iodine Tris(trifluoroacetate)

Synthesis and NMR Analysis of Some Diastereomeric 3-Deoxypentofuranose Derivatives

Iodine tris(trifluoroacetate) (1) oxidizes the cyclic ether 2 to yield a mixture (3) consisting of the four diastereomeric 3-deoxypentofuranoses A-D. The main isomer A, a derivative of 3-deoxythreo-pentofuranose, crystallizes out of the mixture and is thus available in a single step, contrary to six steps necessary before. – The ¹H and ¹³C NMR spectra of the four diastereomers were analysed (fig. 1 and 2). According to the ¹H NMR spectra γ -effects may also be used for determining the configuration in these five-membered rings: γ -substituents changing over from the *trans*-to the *cis*-position cause a low field shift of the proton between 0.04 and 0.22 ppm.

Wie wir früher berichtet haben^{1, 2)}, oxidiert Iod-tris(trifluoracetat) (1) organische Moleküle. Ether werden in α - und β -Stellung oxidiert. Die gleichzeitige Einführung zweier Sauerstoffunktionen in ein gesättigtes Ethermolekül ist ungewöhnlich. Zwar oxidiert auch Bleitetraacetat Ethermoleküle, jedoch nur in α -Stellung (Ausnahme: Diisopropylether, der ebenfalls einer α,β -Oxidation unterliegt³).

Wendet man die α,β -Oxidation von Ethern mit 1 auf 5- und 6-gliedrige cyclische Ether an, so erhält man Desoxypentosen und -hexosen²⁾. Desoxyzucker sind Bestandteil einiger Antibiotika und deshalb von Interesse. Nachfolgend wird die Oxidation des 5-Ringethers 2 und eine ausführliche ¹H- und ¹³C-kernresonanzspektroskopische Untersuchung des dabei gebildeten Diastereomerengemisches beschrieben.

Löst man 2 in Pentan und fügt 1 hinzu, so tritt Erwärmung und Iodausscheidung ein. Die Kugelrohrdestillation ergibt trifluoracetylierte 3-Desoxypentofuranose 3 in 71 proz. Ausbeute.

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979

0009-2940/79/0404-1260 \$ 02.50/0

Obwohl das vermutlich elektrophile Reagenz 1 tertiäre C-Atome schneller als sekundäre oxidiert²⁾, wird die Oxidation dennoch in die α' -Stellung gelenkt, da die α -Stellung durch den – I-Effekt der Trifluoracetoxy-Gruppe desaktiviert ist.

Das Oxidationsprodukt 3 setzt sich erwartungsgemäß aus den vier Diastereomeren A bis D zusammen, deren Verhältnis A:B:C:D = 50:30:8:12 beträgt, wie die NMR-Analyse (s. unten) ergibt. Jedes Diastereomere stellt eine Mischung der beiden Enantiomeren dar.

Aus dem öligen Diastereomerengemisch kristallisiert das Hauptisomere A nach einigen Tagen aus, Schmp. 58°C; die restlichen Isomeren konnten nur durch PGC voneinander getrennt werden. Die Diastereomeren weisen unterschiedliche Beständigkeit auf. Nach ca. 2 Monaten bei 0°C in CDCl₃ erleidet A nur geringe Veränderung, wobei D entsteht. B zersetzt sich weitgehend. Das gleiche gilt für C, wobei etwas B gebildet wird. D verändert sich ebenfalls, teilweise unter Bildung von A. Diese Versuche zeigen zweierlei: (1) A ist unter allen vier Diastereomeren am beständigsten. (2) Die bei der Aufbewahrung in CDCl₃ auftretende teilweise Isomerisierung ist das Ergebnis einer thermodynamischen Gleichgewichtseinstellung und bestätigt die durch NMR getroffene Zuordnung, wonach jeweils A und D, ferner B und C Anomere sind.

Die Methanolyse von A ergibt das Methylglycosid E, dessen NMR-Spektrum mit dem in der Literatur beschriebenen⁴⁾ übereinstimmt. Ob die bei dieser Reaktion beobachtete Retention eine Folge der Nachbargruppenbeteiligung durch die Trifluoracetoxy-Gruppe in 2- oder 5-Stellung oder eine Folge einer Gleichgewichtseinstellung zugunsten E ist, wurde nicht untersucht.

Die Verbindungen A und D gehören in die Reihe der 3-Desoxy-*threo*-pentofuranosen, B und C in die Reihe der 3-Desoxy-*erythro*-pentofuranosen. Vertreter der zuerst genannten Reihe sind erstmals 1963 von *Goodman* et al.⁵⁾ aus D-Xylose synthetisiert worden. Später haben *Khadem* et al.⁴⁾ diese Synthese vereinfacht, indem sie die entsprechende 2,3-Anhydroverbindung durch katalytische Hydrierung zur 3-Desoxyverbindung öffneten und dabei E erhielten. Trotz dieser Vereinfachung sind noch sechs Syntheseschritte erforderlich. Dagegen führt die Oxidation mit Hilfe von 1 in einem einzigen Schritt zu der kristallinen 3-Desoxy-*threo*-pentofuranose A, bei der es sich allerdings um das Racemat handelt.

Die Verbindung **B** stellt das pertrifluoracetylierte Racemat eines natürlich vorkommenden Zuckers dar, der 3-Desoxy-D-ribose im Antibiotikum Cordycepin.

Konfiguration

(a) ¹*H-NMR-Spektren, Kopplungskonstanten:* Die relative Anordnung der Substituenten in 1- und 2-Stellung geht aus den Kopplungskonstanten ³*J*_{1,2} hervor. Das anomere Proton in **A** oder **B** ergibt jeweils ein Singulett (³*J*_{1,2} < 1 Hz), steht demnach *trans*-ständig zum Proton in 2-Stellung; dann bleibt für das anomere Proton in **C** oder **D** (³*J*_{1,2} je 4.5 Hz) nur die *cis*-Anordnung zum jeweiligen Proton in 2-Stellung übrig. Die genannten Kopplungskonstanten liegen in dem Bereich, den man für vicinale Protonen in Fünfringen beobachtet: 0 - 11 Hz für *trans*- und 4.5 - 10 Hz für *cis*-Anordnung⁶.

Chemische Verschiebung, β -Effekt: Nach Anteunis et al. wird das Signal eines Fünfringprotons, in dessen Nachbarschaft Substituenten wie OH, Alkyl u. a. cis-ständig angeordnet sind, in charakteristischer Weise verschoben: Vicinale Substituenten verschieben das Signal nach höherem Feld ("syn-Hochfeld-Regel"^{7,8}) oder " β -Effekt"⁹), Substituenten in 3-Position nach tieferem Feld (" γ -Effekt")¹⁰.

Unter den von den anomeren Protonen herrührenden Signalen sind die beiden bei höherem Feld den Isomeren A und B zuzuordnen (vgl. auch Lit.⁶⁾), da hier anomeres Proton und Acetoxygruppe in 2-Stellung *cis*-ständig zueinander angeordnet sind. Damit ist die zuvor aus den Kopplungskonstanten hergeleitete Konfiguration an den C-Atomen 1 und 2 auch durch die chemische Verschiebung der Signale der anomeren Protonen bestätigt.

Die relative Anordnung der beiden Substituenten in 2- und 4-Stellung geht ebenfalls aus der chemischen Verschiebung, jetzt aus der Differenz der δ -Werte der Methylengruppe im Ring hervor. In A und D ist diese Differenz groß ($\Delta\delta = 0.75$ bzw. 0.50 ppm), und in B und C beträgt sie Null. In A und D müssen die Substituenten in 2- und 4-Stellung *cis*konfiguriert (entspricht der *threo*-Konfiguration in der offenkettigen Form) sein, da nur in dieser Konfiguration 3-H einem zweifachen β -Effekt unterliegt und somit beträchtlich (um 0.75 ppm) abgeschirmt ist. Für B und C bleibt dann nur die *trans*- (entspricht *erythro*-)-Konfiguration übrig, die durch das Zusammenfallen der chemischen Verschiebung der beiden Methylenprotonen im Ring vollauf bestätigt ist.

 γ -Effekt: Die getroffenen Zuordnungen werden durch die γ -Effekte erhärtet. 1-H in A ist wegen des γ -Effektes der *cis*-ständigen 4-OAc_r-Gruppe stärker entschirmt als 1-H in B. Das gleiche gilt für die relative Lage von 1-H in C und D. – Die δ -Werte der 2-Protonen unterscheiden sich nur wenig voneinander. Zu erwarten wäre eine Differenzierung wie bei 1-H. Vermutlich kompensieren sich hier die gegenläufigen β - und γ -Effekte. – Unter den Protonen in 4-Stellung weist dasjenige in D die geringste Entschirmung auf, da hier alle drei Substituenten auf der anderen Seite der Ringebene angeordnet sind. – Von den Signalen der Protonen in 3-Stellung gestatten nur die aus A und D Aussagen über einen γ -Effekt. Das Signal von 3-H in D ist wegen des γ -Effekts der dazu *cis*-ständigen Trifluoracetoxygruppe in 1-Stellung um 0.11 ppm nach tieferem Feld verschoben, wobei das Signal von 3-H in A als Bezug dient. Das gleiche gilt für 3'-H in A und D.

Alle genannten β - und γ -Effekte sind in Abb. 1 eingezeichnet. Die β -Effekte bewirken eine Verschiebung zwischen 0.15 und 0.25 ppm nach höherem Feld und die γ -Effekte eine solche zwischen 0.04 und 0.22 ppm nach tieferem Feld. Damit ist erneut bestätigt^{7, 10)}, daß auch γ -Effekte zur Konfigurationsaufklärung herangezogen werden können.

(b) ${}^{13}C$ -NMR-Spektren, Chemische Verschiebung: Die ${}^{13}C$ -NMR-Spektren sind in Abb. 2 wiedergegeben. Der Übersicht halber sind die Signale herrührend von CF₃ (bei

Abb. 1. Lage der Protonenfrequenzen in den Diastereomeren A - D. β und γ : Verschiebung der Signale durch β - bzw. γ -Effekte. $X = COCF_3$

Abb. 2. ¹³C-NMR-Teilspektren der Verbindungen A – D. X = $COCF_3$. Zahlen neben den Signalen : ${}^{1}J_{C,H}$ -Werte in Hz

ca. 115.5 ppm; ${}^{1}J_{C,F} = 290$ Hz) und C = O (zwischen 155 und 160 ppm; ${}^{2}J_{C,F} = 5-15$ Hz) weggelassen; erstere weisen eine Lage auf, die weitgehend unabhängig von der Stellung der Trifluoracetoxy-Gruppe sowohl innerhalb eines einzelnen Isomeren als auch innerhalb verschiedener Isomeren ist (die Signale unterscheiden sich maximal um den Betrag von 0.5 ppm); letztere konnten nicht zugeordnet werden. Die Zuordnung der restlichen C-Atome geschah durch off-Resonanz oder selektive Entkopplung. Man erkennt, daß

die Signale von C und D bei vergleichsweise hohem Feld liegen, wie auch die folgende Summenbildung¹¹⁾ der genannten C-Atome zeigt.

A
B
C
D

$$\sum_{i=1}^{4} \delta_{C-i} - \sum_{i=1}^{4} \delta_{C-i}^{A}$$
0
-0.06
-13.66
-14.63 ppm^a

^{a)} Negatives Vorzeichen bedeutet Verschiebung nach höherem Feld.

Die Hochfeldverschiebung in C und D ist eine Folge der Wechselwirkung der *cis*ständigen Substituenten in 1,2-Stellung, wie bereits *Perlin* et al.¹²) für Cyclopentanole und bestimmte Furanoside gezeigt haben. Kann man aus den ¹³C-Spektren auch die relative Anordnung zweier 1,3-ständiger Substituenten in Fünfringen entnehmen? D besitzt als einziges Isomeres zwei 1,3-*cis*-Anordnungen, gegenüber C sollten die δ -Werte nach höherem Feld verschoben sein, sofern eine mit der 1,2-Wechselwirkung vergleichbare 1,3-Wechselwirkung existiert. Wie die Summenbildung zeigt, sind die Signale in der Tat nach höherem Feld verschoben, mit 1 ppm fällt der Effekt allerdings klein aus¹²).

Kopplungskonstanten: Die Signale der C-Atome 1, 2 und 4 spalten durch die Kopplung mit den daran gebundenen Protonen jeweils in Dubletts auf, die C-Atome 3 und 5 nicht, wie zu erwarten, in Dubletts-Dubletts, sondern in Tripletts, da offenbar die Werte ${}^{1}J_{C,H}$ und ${}^{1}J_{C,H'}$ sehr ähnlich sind. Wie man den Zahlen aus Abb. 2 entnimmt, steigen die Kopplungskonstanten ${}^{1}J_{C,H}$ erwartungsgemäß mit der Anzahl der an das betreffende C-Atom gebundenen elektronegativen Substituenten, ein Zusammenhang mit der Konfiguration scheint aber nicht vorhanden zu sein.

Konformation

Ein Fünfring nimmt in der Regel eine Vielzahl von Konformationen ein, von denen allerdings bestimmte bevorzugt sind ⁶⁾. Diese Konformationen beeinflussen die chemische Verschiebung der Protonen ⁷⁾ und sind vermutlich auch für die unterschiedlichen Werte der β - oder γ -Effekte in **A** – **D** verantwortlich. Genaue Angaben über die Konformationen von **A** – **D** können nicht gegeben werden. Die geringe Kopplung zwischen 1-H und 2-H in **A** und **B** (<1Hz) weist auf einen Torsionswinkel um 90° hin. Daraus folgt, daß die beiden Wasserstoffe im zeitlichen Mittel überwiegend quasi-äquatorial und die beiden Trifluoracetoxy-Gruppen in 1- und 2-Stellung quasi-axial angeordnet sind. Mit anderen Worten: Auch in den beiden 3-Desoxyzuckern **A** und **B** tritt der anomere Effekt auf¹³⁾.

Experimenteller Teil

Aufnahme der NMR-Spektren durch das Puls-Fourier-NMR-Gerät Jeol-FX-100 mit Texas-Rechner 980 B, 8 k Datenspeicher. Interner ²H-lock, Lösungsmittel CDCl₃, sofern nicht anders vermerkt. Si(CH₃)₄ als innerer Standard. Zur besseren Erkennung der δ - und *J*-Werte der ¹H-NMR-Spektren wurden Homonuclear-Entkopplungsexperimente durchgeführt. Die angegebenen *J*-Werte sind Absolutwerte.

2-(Trifluoracetoxymethyl)tetrahydrofuran (2): 9.0 g 2-(Hydroxymethyl)tetrahydrofuran (0.088 mol) in 30 ml Dichlormethan werden tropfenweise mit 22 g Trifluoressigsäureanhydrid (0.104 mol) versetzt. Die Lösung erwärmt sich und wird nach dem Abkühlen zwecks Entfernung von Trifluoressigsäure dreimal mit eiskaltem Wasser ausgeschüttelt. Nach Trocknen der organi-

schen Phase wird destilliert, wobei 13 g 2 (73%) vom Sdp. $60^{\circ}C/10$ Torr übergehen; Reinheit laut GC (OV 17, 120°C): 99%.

3-Desoxy-1,2,5-tris-O-(trifluoracetyl)pentofuranose [2,3-Bis(trifluoracetoxy)-5-(trifluoracetoxymethyl)tetrahydrofuran¹⁴), 3]: Zu 12.12 g 2 (0.060 mol) in 60 ml Pentan (Gehalt an Isopentan: <1%) gibt man portionsweise 42 g Iod-tris(trifluoracetat)¹⁵) (0.090 mol; das entspricht einem 10proz. Überschuß). Es wird zunächst gelegentlich geschüttelt und nach Abklingen der Reaktion 0.5 h gerührt. Man filtriert aus dem Ansatz (3 Phasen) 11.5 g Iod ab (Glasfritte) und wäscht die Iodkristalle mit wenig Pentan nach, um das anhaftende ölige Produkt abzuspülen. Das Filtrat besteht aus 2 Schichten und wird im Wasserstrahlvakuum eingeengt, zum Schluß bei ca. 60°C zwecks Entfernung restlichen Iods. Das anfallende Rohöl (19.5 g) wird im Kugelrohr bei 90°C/10⁻² Torr destilliert: 18 g Isomerengemisch (71%). GC (OV 17.5 m, 120°C Säulentemp., Temp. des Einspritzblocks <280°C): 4 Signale im Verhältnis A:B:C:D = 50:30:8:12¹⁶) (die Isomeren sind nach zunehmender Retentionszeit geordnet), ferner 2% Verunreinigung.

C₁₁H₇F₉O₇ (422.3) Ber. C 31.2 H 1.66 Gef. C 31.5 H 1.95

Isolierung der Isomeren A-D: Zwecks Kristallisation stellt man das aus der Oxidation von 2 gewonnene Öl bei Raumtemp. (ca. 18 °C) beiseite. Statt des Öls kann man auch eine Mischung verwenden, die man durch Auflösen des Öls im gleichen Volumen Chloroform (40 °C warm und frei von Ethanol) erhält. Nach 3 Tagen wird die von Kristallen durchsetzte Lösung weitere 3 Tage im Kühlschrank bei ca. +5 °C aufbewahrt. Insgesamt fallen 2/3 der an A vorhandenen Menge aus. Die Rohkristalle enthalten etwas **B** und werden im gleichen Volumen Chloroform (40 °C warm und frei von Ethanol) gelöst. Nach 2 Tagen kristallisiert A aus. Durch zweimalige Wiederholung dieses Kristallisationsvorgangs gewinnt man große, klare Kristalle, die aber laut GC- und NMR-Analyse noch 2% **B** enthalten. Aus 18 g Öl erhält man 3.5 g Isomeres A: 3-Desoxy-1,2,5-tris-O-(trifluoracetyl)- α -DL-threo-pentofuranose [2r, 3t-Bis(trifluoracetoxy)-5t-(trifluoracetoxymethyl)tetrahydrofuran]; Schmp. 57–58 °C. Die Kristalle sind bei -20 °C monatelang haltbar.

¹H-NMR: $\delta = 2.05$ (dddd, ² $J_{3,3'} = 15$, ³ $J_{3,4} = 6.4$, ³ $J_{3,2} = 1.7$, ⁴ $J_{3,1} = 0.7$ Hz; 3-H), 2.84 (ddd, ² $J_{3',2} = 15$, ³ $J_{3',4} = 8.6$, ³ $J_{3',2} = 6.5$ Hz; 3'-H), 4.42 (m, 5-,5'-H), 4.74 (m, 4-H), 5.5 (dd, ³ $J_{2,3} = 1.7$, ³ $J_{2,3'} = 6.5$ Hz; 2-H), 6.52 (s, Halbwertsbreite 1.5 Hz; 1-H).

B, C und **D** werden aus der Mutterlauge, die beim Kristallisieren von A anfällt, durch GC (15% OV 17, 2 m, 1/4', 120° C) isoliert.

Isomeres D: 3-Desoxy-1,2,5-tris-O-(trifluoracetyl)- β -DL-threo-pentofuranose [2r,3c-Bis(trifluoracetoxy)-5c-(trifluoracetoxymethyl)tetrahydrofuran], Öl. – ¹H-NMR: 2.19 (m, 3-H), 2.73 (m, 3'-H), ca. 4.51 (m, 5-, 5'-H), ca. 4.6 (m, 4-H), 5.41 (m, 2-H), 6.57 (d, J = 5.0 Hz, 1-H).

Isomeres B: 3-Desoxy-1,2,5-tris-O-(trifluoracetyl)- β -DL-erythro-pentofuranose [2r,3t-Bis(trifluoracetoxy)-5c-(trifluoracetoxymethyl)tetrahydrofuran], Öl. – ¹H-NMR: 2.43 (m, AB-Teil eines ABMX-Spinsystems mit $v_A \approx v_B$, 3-, 3'-H), 4.49 (m, 5-, 5'-H), 4.81 (m, 4-H), 5.53 (t, 2-H), 6.43 s (1-H).

Isomeres C: 3-Desoxy-1,2,5-tris-O-(trifluoracetyl)- α -DL-erythro-pentofuranose [2r,3c-Bis(trifluoracetoxy)-5t-(trifluoracetoxymethyl)tetrahydrofuran], Öl. – ¹H-NMR: 2.51 (m, AB-Teil eines ABMX-Spinsystems mit $v_A \approx v_B$, 3-, 3'-H), 4.51 (m, 5-, 5'-H), 4.83 (m, 4-H), 5.47 (m, 2-H), 6.63 (d, J = 4.5 Hz, 1-H).

Massenspektren der Isomeren A – D: Die durch GC/MS-Kopplung erhaltenen Spektren unterscheiden sich nicht in der Lage der Signale und kaum in der Intensität der Signale voneinander. $m/e = 309 (10\%, (M - CF_3CO_2)^+), 295 (10, (M - CF_3CO_2CH_2)^+), 195 (10, (M - CF_3CO_2)^+), - CF_3CO_2H)^+), 181 (22, (M - CF_3CO_2CH_2 - CF_3CO_2H)^+), 153 (22, (181 - CO)^+), 69 (100, CF_3).$

Chemische Berichte Jahrg. 112

Methyl-3-desoxy- α -DL-threo-pentofuranosid [5t-Hydroxymethyl-2r-methoxytetrahydro-3t-furanol] (E): Man erhitzt die Lösung von 0.5 g des Isomeren A (laut NMR durch ca. 2% Isomeres **B** verunreinigt) in 3 ml Methanol (über Mg-Späne destilliert) 3 h zum Sieden. Das Methanol wird abdestilliert (Wasserstrahlvakuum) und der Rückstand bei 10⁻² Torr 2 h getrocknet, wobei ein Sirup zurückbleibt.

¹H-NMR (D₂O): $\delta = 1.64$ (dddm, J = 2.8, J = 6, J = 14.4 Hz, 3-H, *cis* zu OH), 2.36 (ddd, J = 7, J = 8.8, J = 14.4 Hz, 3'-H), 3.36 (s, OCH₃), 3.67 (AB-Teil von ABX, 5-, 5'-H), 4.25 (m, 2-, 4-H), 4.94 (s, 1-H).

Das NMR-Spektrum stimmt mit dem in Lit.⁴⁾ für Methyl-3-desoxy- α -D-threo-pentofuranosid (Schmp. 47 °C) angegebenen überein. Das β -Isomere hat sich nicht gebildet, da dessen in gleicher Literatur angegebene NMR-Signale fehlen.

Literatur

- ¹⁾ J. Buddrus, Angew. Chem. 85, 115 (1973); Angew. Chem., Int. Ed. Engl. 12, 163 (1973).
- ²⁾ Kurzmitteilung: J. Buddrus und H. Plettenberg, Angew. Chem. 88, 478 (1976); Angew. Chem., Int. Ed. Engl. 15, 436 (1976).
- ³⁾ Zusammenfassungen: ^{3a)} R. Criegee in K. B. Wiberg, Oxidation in Organic Chemistry, Part A, S. 319, Academic Press, New York 1965. ^{3b)} D. G. Lee in R. L. Augustine, Oxidation, Bd. 1, S. 56, Marcel Dekker, New York 1969.
- ⁴⁾ H. S. El Khadem, T. D. Andichya und M. J. Withee, Carbohydr. Res. 33, 329 (1974).
- ⁵⁾ G. Casini und L. Goodman, J. Am. Chem. Soc. 86, 1427 (1964).
- ⁶⁾ A. Gaudemer in H. B. Kagan, Stereochemistry, Fundamentals and Methods, Bd. 1, S. 89-94, Verlag George Thieme, Stuttgart 1977.
- 7) M. Anteunis und D. Danneels, Org. Magn. Reson. 7, 345 (1975).
- ⁸⁾ Anwendung: D. Van Haver, M. Samson und M. Vanderwalle, Tetrahedron 33, 255 (1977).
- 9) R. Knollmann, N. Jersch, I. Dyong, A. de Bruyn und M. Anteunis, Chem. Ber. 110, 2729 (1977).
- ¹⁰⁾ F. Borremans, M. Anteunis und F. Anteunis-De Ketelaere, Org. Magn. Reson. 5, 299 (1973).
- ¹¹⁾ Zur Summenbildung siehe A. S. Perlin in E. Buncel und C. C. Lee, Isotopes in Organic Chemistry, Bd. 3, S. 186, Elsevier, Amsterdam 1977.
- 12) R. G. S. Ritchie, N. Cyr, B. Korsch, H. J. Koch und A. S. Perlin, Can. J. Chem. 53, 1424 (1975).
- 13) Zusammenfassung: Ph. L. Durette und D. Horton, Adv. Carbohydr. Chem. 1971, 74.
- ¹⁴⁾ Man beachte, daß die Numerierung bei Zuckern am anomeren C-Atom, bei Tetrahydrofuran dagegen am O-Atom beginnt. Zur Beschreibung der NMR-Spektren wird die Zuckernomenklatur verwendet.
- ¹⁵⁾ M. Schmeisser, K. Dahmen und P. Sartori, Chem. Ber. 100, 1633 (1967).
- ¹⁶) Das in der Kurzmitteilung²) angegebene Isomerenverhältnis ist durch das hier genannte zu ersetzen.

[245/78]